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Abstract— This paper presents a novel, data-driven algorithm
for the computation of the Remaining Useful Life (RUL) of an
asset. The algorithm utilizes the asset’s state history to learn a
prognostic model from data. The prognostic model comprises an
ensemble of Auto-Regressive (AR) models, together with a state-
of-the-art classifier. The AR part of the algorithm is used to
predict the system’s state evolution. The classifier discriminates
between healthy and faulty operation, given the asset’s current
state. The predicted state, as computed by the AR model, is
fed to the classifier. The first time when the predicted state
is classified as faulty is returned as the RUL of the system.
The resulting prognostic algorithm was tested on the CMAPSS
dataset as provided from NASA Ames Research Center. Cases of
unknown future input trajectory as well as cases with multiple
faults have been investigated.

I. INTRODUCTION

Prognostics pertain to the computation of the Remaining
Useful Life (RUL) of an asset. The RUL is defined as the
time interval during which the asset’s performance satisfies
certain criteria. By understanding the factors that are relevant
to the RUL, the operation and maintenance of the asset
can be optimitised. Furthermore, the insight provided by the
prognostic models informs Design for Reliability (DFR) for
next generation assets.

Data-driven methods have recently become popular for
prognostic applications. This is a result of the abundance of
historical data from modern engineering systems. Moreover,
recent advances in machine learning provide the means of
interpreting these data effectively. There are two impor-
tant issues, however, that need to be addressed to enable
successful prognoses. Firstly, the data that are available to
the engineers are not always suitable for training machine
learning algorithms. Assets are often stopped before total
failure. Consequently, the available datasets are censored; the
full trajectory of the state of the asset is not recorded until
failure. Even in the case of uncensored data, however, the
majority of the data samples belong to the healthy region of
operation. This skewness in the data hinders the training of
the algorithms. Another common problem is related to the
asset’s variance in dynamics. Different operating conditions,
as well as manufacturing uncertainty are two possible ex-
planations for that. The need for a “smart” model, which is
robust to the asset’s dynamic versatility, is prominent.
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In this paper, a novel algorithm is presented, which ad-
dresses both the problems of data skewness and dynamic
variance. It employs a state-of-the-art classifier, together
with an adaptive autoregressive predictive model. Random
Undersampling Boosting (RUSBoost) [1], is used to classify
the state of the system as healthy or faulty; hence acting
as a fault detector. RUSBoost addresses the skewness of the
dataset using random undersampling of the over-represented
class. Moreover, RUSBoost can be applied without loss of
performance on multi-class problems. This is particularly
useful in the presence of multiple types of faults. The
dynamic model is based on the Locally Weighted Projection
Regression (LWPR) [2], a regression algorithm for non-linear
functions with high dimensional input. LWPR is accurate and
stable, when trained on sufficiently large datasets (more than
2000 samples). The parameters of the LWPR are updated in
real time, as more data become available. The incremen-
tal update of the parameters ascribes adaptivity to LWPR.
Hence, the dynamic model compensates for changes in the
asset’s dynamics. The asset’s dynamic model is utilised to
forecast the evolution of the asset’s state. The predicted state
trajectory, as computed by the dynamical model, is fed to the
classifier. The classifier, in turn, infers the health state of the
asset. The first time instant at which the state is classified as
faulty is returned by the algorithm as the remaining useful
life of the asset. The algorithm was tested on two datasets,
as provided from NASA’s Ames Research Center [3], [4].

The structure of this brief is as follows: Section II presents
the current state of the art in data-driven prognostics. Next,
the LWPR method, as used for the adaptive autoregression,
and the RUSBoost classifier are described. The combination
of the latter, to predict the remaining useful life, is analyzed
in section V. The results of the algorithm, applied to a
prognostic competition dataset, are given in section VI.
Finally, the paper concludes with a brief discussion on the
results and on possible extensions of the algorithm.

II. RELEVANT WORK

Various data-driven methods have been reported in the
prognostic literature for the estimation of the remaining
useful life. Auto-Regressive Moving Average (ARMA) and
Exponential Projection methods [5] are amongst the most
common techniques. [6] employed an ARMA model to
compute the RUL of bearings. Random processes have been
used to tackle the problem of varying operating conditions
and manufacturing variance. Random Coefficient Regression,
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originally proposed by [7], utilizes a stochastic model, that
consists of the actual degradation level combined with a
corrective term. The corrective term is, in fact, a normal
distribution with zero mean and constant standard deviation.
Similarly, other techniques are based on stochastic processes
(Wiener Process, Gamma Process) for forecasting. Gebraeel
et al [8] developed a random coefficient regression method
based on the Wiener Process (Standard Brownian Motion).
The parameters of the method are updated online in a
Bayesian fashion.

Another tool, often found in data-driven prognostic appli-
cations, is the Kalman Filter. The Kalman Filter is used to
forecast the mean value of a set of fault precursor variables.
To this end, a dynamic model is employed to predict the
evolution of the precursor variables. The parameters of the
model are identified using historical data. The choice of
the dynamical model influences the accuracy of the results
significantly. The state vector of the Kalman Filter is often
augmented to include the parameters of the model. In this
way the filter can adapt to changes in the environment [9].
In [10], the Kalman Filter is utilized to predict the evolution
of a crack in a tensioned steel band. A generalization of the
Kalman Filter, namely the Particle Filter, is used in cases
where the noise statistics are not Gaussian. Particle Filters
parametrize the relevant distributions with a population of
samples (particles) [11]. Consequently, they can approximate
arbitrarily complex distributions.

Clustering pertains to the study of grouping objects based
on feature similarity. Clustering algorithms maximize fea-
ture similarity within the groups. Additionally, inter-group
diversity is also maximized. In the case of fault detection,
the objects are the vectors that hold the sensor data and
the clusters are associated with potential faults. One of the
most common clustering algorithms is K-Means. The feature
similarity amongst objects is quantified using some sort of
’distance’ metric. In particular, distance metrics for fault
detection can be found in [12]. Moreover, Support-Vector-
Machines [13] and their kernel-based extensions [14] are
used to optimize the boundaries between the clusters.

Several prognostic algorithms leverage Hidden Markov
Models (HMMs) to predict the remaining useful life of an
asset. Approaches based on HMMs are documented in [15],
[16]. One drawback of HMMs arises from the fact that the
duration of each state is not modelled explicitly. Therefore,
staying at a certain state follows a geometrical distribution.
This assumption can often present practical applications with
shortcomings, as it is too rudimentary. As a remedy, Hidden
Semi-Markov Models (HSMM) [17] have been developed.
In a Hidden Semi-Markov Model, the state duration is also
treated as a random variable; it is drawn from a probability
distribution. The parameters of such a distribution are learned
during the training phase. HSMM have been shown to deliver
better prognostic accuracy [18].

Finally, another extension of Hidden Markov Models uses
Mixtures of Gaussians for representing the emission proba-
bilities of the observation sequence, in the case of continuous
variables. A prognostic algorithm subject to this concept has
been documented by [19].

Similar to our work, [20] uses an ensemble of regression
models together with a classifier to compute the Remaining
Useful Life. The two methods belong to the same prognostic
regime, albeit different algorithms have been employed for
each of the modules of the prognostic system.

III. ADAPTIVE AUTOREGRESSION

The prognostic accuracy depends on the reliable prediction
of the system’s state. Moreover, the system’s model needs to
be adaptive, to account for variance in dynamic parameters,
as well as for diverse operating conditions. To accomplish
that, a modern incremental learning method, namely the Lo-
cally Weighted Projection Regression (LWPR) [2], has been
used. In the rest of this section, the adaptive autoregression
part of the prognostic approach is described.

A. Linear Weighted Projection Regression

Locally Weighted Projection Regression (LWPR) [2] is a
state-of-the-art tool for non-linear function approximation.
It combines dimensionality reduction together with locally
weighted regression. The domain of the target function (i.e.
the space of explanatory variables) is partitioned using a set
of Receptive Fields. A receptive field is represented by a
kernel. Each receptive field defines a neighborhood around a
point. Furthermore, the kernel assigns weights to the points
in that region. Following that, Partial Least Squares (PLS)
[21] is applied on every "neighborhood", as defined by the
kernels. In this way, the dimensions of the input space that
best explain the variance of the dependent variables are
identified. The local dimensionality reduction renders LWPR
suitable for problems with high input dimension. After the
dimensionality reduction, the locally applied PLS computes
the parameters of the hyperplane, which best fit the data.
Each hyperplane, as such, is a local approximation of the
non-linear target function. Given a new query point, all local
models compute a prediction based on the local hyperplane,
that has been fitted during training. All these predictions are
summed up, using the weights from the receptive fields, to
compute the final prediction of the target function. In this
manner every local model contributes only a fraction to the
final estimation. The contribution of each model is regulated
by the respective receptive field. Incoming data samples
trigger the updating rules for both the local dimensionality
reduction computation, as well the local regression. The
incremental updating of the parameters of the model ascribe
to LWPR adaptivity.

The training of the algorithm requires a certain set of
parameters to be tuned by the user. The most important
parameters are listed below:

• init_D : initial size of the Gaussian kernel
• init_alpha : learning rate for the optimization of the

receptive field parameters
• update_D : switches the online adaptation of the

receptice fields on/off
• penalty: this parameter is used to prevent the algorithm

from converging to indefinetely small receptive fields
(this is actually the term γ in Equation 1).
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The parameter init_D is proportional to the inverse of the
Gaussian kernel’s variance. Small values of init_D result to
wider receptive fields. Depending on the target function, this
may lead to poor performance of the model; approximating
a non-linear function with scant local linear models. On the
contrary, an excessive value for this parameter favors small
receptive fields. This may cause overfitting problems. The
size of the receptive fields is adapted on-line, if the parameter
update_D is set to ’true’. In that case, the parameters of the
receptive fields are computed by optimizing the following
objective function:

J =
1∑M

i=1wi

M∑
i=1

wi(yi − ŷi,−i)
2 +

γ

N

N∑
i,j=1

D2
ij (1)

where M is the number of training samples, wi are
the weights, as computed by the existing kernels, γ is a
penalty term to prevent the receptive fields from shrinking
indefinitely, D is the covariance matrix of the Gaussian
kernel and N is the dimension of the input space.

B. Autoregressive LWPR

The prognostic algorithm uses LWPR to predict the asset’s
future state, given part of the state history (depending on the
order of the model) and the current input (see Equation 2).

yn = f(yn−k:n−1, un−m:n−1) (2)

Equation 2 describes the general case of an Auto-Regressive
model with Exogenous inputs (ARX). In typical ARX mod-
els f(., .) is a polynomial of the inputs and the previous
states of the system: A(B)y(t) = C(B)u(t − 1), where A
and C are polynomials of the back shift operator B. LWPR
extends the representational power of the ARX, to include
arbitrarily complex functions of the inputs. However, using
LWPR doesn’t yield theoretical guarantees about the ARX
model’s stability. The authors intend to investigate further on
this matter.

C. Training

The LWPR model was trained as follows: Firstly, init_D
was tuned without activating the online adaptation feature.
Tuning this parameter was formulated as an optimization
problem. The objective function was the Mean Square Error
(MSE) of the predictions of the model, applied to a cross-
validation test. The optimization problem was solved using
fmincon from MATLAB’s optimization toolbox. This par-
ticular solver (fmincon), however, is mostly suitable for
convex optimization problems. For this reason, the opti-
mization problem was solved several times from random
starting points, to avoid local minima. Finally, the parame-
ter init_alpha was optimized in a similar fashion, having
first enabled the online adaptation of the receptive field
parameters (update_D = 1). The resulting parameters are
summarized in Table I.

Figures 1, 2 show the generalization capacity of the
resulting model. The performance of the model is tested on

TABLE I
LWPR PARAMETERS

init_D init_alpha penalty
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Fig. 1. This graph shows the one step prediction from the model on a
cross-validation set compared with the original value. The size of the cross-
validation set consists of approximately 20% of the full data. The mean
square error for the one-step prediction was 1.1 · 10−4.

an engine, which was not used for training. In Figure 1,
the model was utilized to perform one-step predictions on
random state samples. In Figure 2, the estimated trajectory
of the state is compared with the ground truth.

IV. ROBUST CLASSIFICATION

State-of-the-art classification algorithms combine under-
sampling or oversampling with boosting. In boosting, multi-
ple weak classifiers are trained sequentially, to compensate
for the misclassified samples. The most popular algorithm of
this class is AdaBoost [22]. AdaBoost begins with the train-
ing of a single weak classifier (e.g. SVM). The missclassified
samples of the training dataset are given higher weights.
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Fig. 2. This graph shows the reconstructed trajectory of the first state of
the engine as computed by our model. The auto-regressive model uses 8
lags for both the input and the output. To create this graph the actual input
of the engine was used. We can see that the estimated trajectory accurately
follows the original state trajectory of the engine.
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Fig. 3. This figure shows the miss-classification rate for the RUSBoost
classifier versus the number of weak learners used. The performance of the
algorithm was evaluated on a cross-validation set. The classification error
converges asymptotically to its minimum after 700 weak learners.

Then another weak classifier is trained on the dataset, with
focus on the data with higher weights. This process is
repeated until the desired performance has been achieved.
Below, two algorithms, which utilize sampling together with
boosting, are described.

Synthetic Minority Oversampling TEechnique Boosting
(SMOTEBoost) [23] iteratively trains classifiers on datasets
with oversampled instances of the under-represented class
[24]. In this way, the importance of the misclassification
for the minority class is increased. The overfitting problem
persists, albeit the missclassification error is decreased. Ran-
dom Under-Sampling Boosting (RUSBoost) [1] balances the
training set by removing instances of the over-represented
class. One weak classifier is trained on the resulting dataset.
Then the classifiers performance is checked against the
original dataset. The weights are adjusted as in the AdaBoost
algorithm to give higher importance to the misclassified
instances. A new dataset is created and the process is
repeated. In this way, RUSBoost avoids the drawbacks of
discarding useful information, while it preserves the class
balance within each dataset.

RUSBoost was applied on the training dataset, provided
by NASA Ames center. The training set comprises historical
data from a fleet of one hundred engines. Decision Trees
were the weak classifier of choice. Figure 3 shows the miss-
classification rate as a function of the number of weak
classifiers used. The confusion matrix of the RUSBoost
classifier and of an AdaBoost classifier are shown in Table
II for comparison. It is obvious how RUSBoost outperforms
AdaBoost, especially in the number of false positives.

V. REMAINING USEFUL LIFE COMPUTATION

The remaining useful life is computed by combining the
autoregressive model with the classifier. Firstly, the LWPR
is trained on a subset of the full dataset. After the training is
over, the algorithm is equipped with an ensemble of n×m
models, where n is the number of engines in the training
dataset and m is the dimension of the engine’s state space.

TABLE II
CONFUSION MATRICES FOR ADABOOST (ABOVE) AND RUSBOOST

(BELOW)

Predicted

A
ct

ua
l Class Healthy Faulty

Healthy 100 0
Faulty 100 0

Predicted

A
ct

ua
l Class Healthy Faulty

Healthy 98.8073 1.1927
Faulty 0 100

The RUSBoost classifier is trained on the same dataset.
Following that, for each engine in the test dataset a set of
1 × m models is selected from the ensemble, which most
accurately capture its dynamics. To this end, the response of
all the models in the ensemble is simulated, using the input
of the engine of interest. Then for each estimated trajectory
the coefficient of determination (see Equation 3) is computed.
The model with a coefficient nearest to unity is selected.

R2 = 1 − SSres

SStot

SSres =
∑
i

(yi − fi)
2 (3)

SStot =
∑
i

(yi − ȳ)2

After each engine has been associated with a model, the
respective states are simulated and fed into the classifier. The
time instant at which the state is classified as faulty is the
remaining useful life of the engine. A major issue is that the
future input of the engine is not known a priori. A simple
solution would be to use a constant input, equal to the mean
of the input hitherto. Alternatively, the input could be kept
constant to the value of the Root Mean Square (RMS) or
to its last known value. A more sophisticated way to deal
with this problem would be to use a seperate AR model
to forecast the input. This model is trained using the input
history. During the experiments, all the aforementioned input
forecasting techniques were tested. The results are discussed
in detail in section VI.

VI. EXPERIMENTS

The dataset that was used to test the prognostic algorithm
comprises information from one hundred turbofan engines.
For each engine, data samples from twenty-one sensors,
together with three input variables (operating conditions)
have been recorded. Different initial wear and variation in the
engine’s dynamics have been assumed. The engine develops
a fault at a random time instant. The state trajectories,
however, are recorded from the beginning of the engine’s
operation, to the point of failure. Only one fault is present
in this dataset. We used 80% of the engines for training
and 20% for validation. The classifier and the adaptive
autoregressive models were trained as described above.

For each engine in the validation set, a model was selected,
as discussed in Section V. Next, the model was simulated
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Fig. 4. This graph shows the total engine life, as given by the dataset,
compared to the total life, computed by our prognostic algorithm. The
total life is computed by adding the time when the forcast started with
the remaining useful life prediction of the engine. The input used in this
experiment was assumed to be known (the input history from the dataset
has been used)

80 85 90 95 100
0

100

200

300

400

500

Engine ID

E
n
g
in

e
 L

if
e

Comparison of RUL estimation with ground truth

 

 

ground truth

estimated rul

Fig. 5. In this experiment, the computation was repeated as described in
Figure 4 with different assumptions over the input. Here we didn’t use the
true values of the future input. A constant value equal to the last known
input was used for the future predictions of the model. We can see that the
accuracy of the estimation dropped significantly.

starting from a user-defined time (e.g. 50 time samples before
the end of the trajectory) to the future. The starting time
of the simulation may influence the prognostic accuracy,
depending on which input forcasting method is used. In
Figure 4 the total life of the test engines is shown. In this
experiment, the future input is assumed to be known a priori.
The algorithm predicts the Remaining Useful Life with a
mean square error of six cycles. Next, in an effort to relax the
assumption with respect to the input, three more experiments
have been conducted. In the first experiment, the input was
kept constant, to its latest value (see Figure 5). In the next
experiment, the input was kept constant to the mean of the
input history (see Figure 6). Finally, the last graph shows
the total life prediction, when the input was forecasted by a
fourth-order auto-regressive model.

One last experiment was performed, to test the robustness
of the RUSBoost algorithm, in the case of multiple faults. To
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Fig. 6. In this experiment, the input was assumed to be equal to the mean
value of the previous input trajectories. Again, the performance becomes
worse for the majority of the test engines.
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Fig. 7. In this experiment, the input was forecasted by an Auto-Regressive
model (AR). The AR model was of order 4 and its parameters were
identified using the past input history. In this figure, we can see that the
algorithm still predicts the total life of the engine quite accurately.

this end, the prognostic algorithm was applied on a dataset
with two types of faults. The results are illustrated in Figure
8. The performance of the classifier was not influenced by
the presence of different fault types.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a novel approach for the computation of the
remaining useful life was presented. Combining a state of
the art regression method for state estimation, together with
a robust classifier yielded accurate prognostic predictions. In
the case of unknown future inputs, an Auto-Regressive model
has been used. Forecasting the input using AR doesn’t seem
to influence the accuracy of the predictions. Moreover, the
variation of the engine’s dynamics has been addressed. Given
a representative training dataset, it was shown that the algo-
rithm is robust to manufacturing uncertainty. Additionally,
the algorithm performed equally well on the dataset where
two distinctive faults occured.

The authors intend to explore further theoretical notions,
such as stability criteria for the autoregressive model. More-
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Fig. 8. We repeated the experiment described in Figure 4 on another dataset
provided by Ames Center. The difference in that one is that it comprises
engines with two types of fault. The purpose of this experiment was to check
the robustness of the RUSBoost classifier in the case of multiple faults. The
figure above shows the results when the original input is used. The figure
below was created using an autoregressive model to forecast the input.

over, the model selection process can be improved. We are
considering of introducing the initial wear and the manu-
facturing uncertainty as latent variables inside the model. In
this manner, the model selection will be more rigorous and
computationally efficient. Tests on real-world data are also
planned to evaluate the algorithm’s performance.
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