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Abstract— Navigation is instrumental in the successful de-
ployment of Autonomous Underwater Vehicles (AUVs). Sensor
hardware is installed on AUVs to support navigational accuracy.
Sensors, however, may fail during deployment, thereby jeopar-
dizing the mission. This work proposes a solution, based on an
adaptive dynamic model, to accurately predict the navigation of
the AUV. A hydrodynamic model, derived from simple laws of
physics, is integrated with a powerful non-parametric regression
method. The incremental regression method, namely the Locally
Weighted Projection Regression (LWPR), is used to compensate
for un-modeled dynamics, as well as for possible changes
in the operating conditions of the vehicle. The augmented
hydrodynamic model is used within an Extended Kalman
Filter, to provide optimal estimations of the AUV’s position
and orientation. Experimental results demonstrate an overall
improvement in the prediction of the vehicle’s acceleration and
velocity.

Index Terms— underwater navigation, adaptive model, dead
reckoning, sensor failure

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are used ever

more in commercial, military and research missions. In-

spection of underwater infrastructure, mine detection and

scientific data gathering are typical examples of AUV appli-

cations. The success of the latter relies on the accuracy of the

navigation. The navigation system pertains the computation

of the vehicle’s pose (position and orientation with respect

to a fixed coordinate frame), given the data from its sensors.

For this purpose, various sensors have been developed

and deployed on AUVs. Inertial Measurement Units (IMUs)

measure the acceleration along the three axes of rotation

(roll, pitch, yaw). Most recently, IMUs integrate the mea-

sured accelerations on-line, thus providing estimations of the

angular velocities and positions. Likewise, linear velocities

are measured using Doppler-based sensors. Integration of

the latter provides estimations of the vehicle position. Ab-

solute measurements are also acquired during the mission.

Magnetic compasses provide an absolute measurement of

the vehicle’s orientation, whereas Global Positioning System

(GPS) sensors estimate the vehicle’s absolute position. This

is accomplished by the trilateration of satellite signals. Under

water, however, the reception of such signals is limited. To

this end, AUV’s often surface amidst mission execution, to

get a GPS fix. An alternative way, to exploit the benefits

of a GPS system, is with the aid of a surface vehicle. The
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relative position of the two vehicles is computed using a

Long-Baseline (LBL) Acoustic Positioning System. Given

the relative position of the two vehicles and the GPS fix from

the surface vehicle, the AUV corrects its position estimation.

Hence, GPS technologies are still applicable, albeit they

increase the complexity of the navigation system.

Alternatively, Simultaneous Localization and Mapping

(SLAM) techniques [1] compute the position of the robot

with respect to a map of the environment. The latter is either

given a priori or it is created on line. The map is constructed

by accumulating position information about observed land-

marks in the environment. While moving, the robot predicts

the expected position of the aforementioned landmarks.

This is accomplished by combining its previous position

estimation, its kinematic model and the map, as constructed

until that specific time instant. Following that, the robot

attempts to match current observations with the expected

landmarks in sight. In this manner, the robot updates its

belief about its location in the map. Localization relative to

landmarks is very practical for robotic applications. SLAM,

however, relies on the assumption, that the environment is

rich in features, which can be perceived by the robot. This

assumption is often violated in the underwater domain.

Since the direct measurement of the robot’s position is

difficult and SLAM methods are not always applicable,

underwater navigation depends strongly on dead reckon-

ing. Given the robot’s initial position and orientation, the

measurements from the navigation sensors (mainly from the

IMUs and the Doppler Velocity Log (DVL)) are integrated

to yield the robot’s current pose. Nevertheless, in the case of

a sensor failure, the robot has no means to navigate further.

Consequently, the success of the mission is compromised.

Moreover, without accurate navigation, it may be impossible

to retrieve the robot. As a remedy, the dynamics are used

to estimate the robot’s position and help recover it from the

water.

In this paper, a novel algorithm for underwater naviga-

tion is presented. The algorithm is based on the robot’s

hydrodynamic model, combined with a non-linear additive

term. The latter compensates for unmodeled non-linearities,

as well as for possible variance in the operating conditions.

The corrective term is approximated by the Locally Weighted

Projection Regression algorithm [2], an incremental method

for non-linear function approximation with high dimensional

input spaces. The augmented hydrodynamic model (i.e. the

original hydrodynamic model together with the non-linear

corrective term) is used within the prediction step of an Ex-



tended Kalman Filter (EKF). The accuracy of the augmented

model’s predictions exceeds that of the plain hydrodynamic

model.

This paper is organized as follows: In Section II, relevant

work is summarized and contrasted with our approach. Next,

the algorithm , as well as the tuning process of the LWPR,

is described in section III. Section IV demonstrates the

performance of the algorithm on experimental data. The

paper concludes with a summary of the results and directions

for future work.

II. RELEVANT WORK

AUV Navigation has long attracted the interest of the

robotics community. Early research in this field was mostly

focused on sensor development. As a result, several authors

discussed the deployment of navigation sensors, such as

Inertial Measurement Units (IMUs), Doppler-Based sensors

etc. A good review on the early advances of underwater

navigation research can be found in [3].

Following the advancement of navigation sensors, many

authors combined measurements, as such, with mathematical

models. Lohmiller et al [4] developed a velocity estimator

for an underwater vehicle. The velocity estimator was based

on an accurate non-linear model of the vehicle. Similarly, [5]

used a detailed model of the vehicle to estimate its full state

(i.e. position and velocity).

The use of mathematical models became more sophis-

ticated, by taking into account the characteristics of the

measurement noise. The Kalman Filter and its non-linear

variant, namely the Extended Kalman Filter (EKF), is often

found in modern navigation algorithms [6], [7], [8]. The

aforementioned approaches employ a pure kinematic model

for the process, together with all the information form the

sensors. In this way, the Kalman Filter merely fuses the

incoming sensor data sensor in an optimal fashion. More

sophisticated algorithms leverage the dynamic equations of

the vehicle as the process model [9].

Further to the use of dynamics within navigation, algo-

rithms that adapt the dynamic models on-line gained popu-

larity. Such algorithms tune the process and the measurement

models in real time, as new data enter the system. Wang et al

[10] describe a neural network aided Adaptive Kalman Filter

(AKF). The filter attempts to match the theoretical with the

actual covariances, as computed from the data. Song [11]

formalized the tuning of covariances of an Uncented Kalman

Filter as an optimization problem. The cost function of the

optimization is the error between the innovation covariance

and the predicted covariance.

Similarly to our work, Jwo in [12] used a neural network to

compensate for unmodeled non-linearities in GPS navigation.

Another example of the use of neural networks together

with the system’s dynamics comes from the diagnostics

literature. Zhang et al [13] used neural networks to compute a

corrective term for the dynamic model of an aircraft engine.

Despite the capacity of neural networks in approximating

non linear functions, the design decisions relative to the

network’s structure (e.g. number of hidden layers) influence

its performance significantly. LWPR, on the other hand,

achieves very good performance easily; without the need for

elaborate tuning (see Section III-B). [14] used a Gaussian

Process to approximate a non-linear corrective term for the

dynamics of a blimp. The advantage of our method over

that, originates from the adaptive traits of the model; LWPR

provides a straightforward way of adaptation to changes in

either the vehicle’s dynamics or operating conditions.

III. ALGORITHM

The pose of the robot is predicted using the hydrodynamic

model, together with a non-linear additive term (augmented

hydrodynamic model). The hydrodynamic model was derived

from first principles of physics. Given the forces applied

by the thrusters, the first term in (1) estimates the vehicle’s

acceleration.The additive term is used to account for unmod-

elled non-linear phenomena, as well as to adapt the dynamic

model in real time, if necessary. The corrective term was

approximated using the LWPR algorithm. The navigation

system is described by the following equations:

ẋ =f(x, u) (1)

=fhydrodynamics(x,u) + f̂LWPR(x,u)

Where:

x =[xtranslation,xrotation]

xtranslation =[north, surge, east, sway, depth, depth rate]

xrotation =[roll, roll rate, pitch, pitch rate, yaw, yaw rate]

u =[F1, F2, F3, F4, F5, F6]

Fi =Force from thruster i

The first two thrusters accelerate the robot along the surge

direction. Thrusters 3, 4 are mounted perpendicular to the

robot’s long axis and control the sway and the yaw of the

robot. The last two are used to submerge/surface the robot.

A. Hydrodynamics

In this section, the derivation of the hydrodynamic model

is described. Newton’s second law of motion has been

applied to yield the vehicle’s dynamic model. The forces,

which were considered for the model derivation, comprise

the hydrodynamic drag, the forces from the thrusters, as

well as the friction between the robot’s skin and the water.

The friction was modeled with a constant term, whose sign

depends on the direction of motion, together with a first-order

Coulomb friction model. In more detail:

ẋ = M
−1 · (u− Fdrag − Ffriction) (2)



Where:

M = diag{M,M,M, Ix, Iy, Iz}

M : weight of the robot

Ix : moment of inertia along the roll axis

Iy : moment of inertia along the pitch axis

Iz : moment of inertia along the yaw axis

The moments of inertia Ix, Iy, Iz were computed analyti-

cally, assuming that the geometry of the robot is a perfect

cylinder. The forces in the i-th direction are computed as

follows:

F
(i)
thrust = gaini × (%max thrust) (3)

F
(i)
drag = 0.5 · Ciρwater · Si · |ẋi| · ẋi (4)

F
(i)
friction = F

(i)
static + F

(i)
coulomb (5)

= −ksv · ẋi − kc · sign(xi)

TABLE I

HYDRODYNAMIC PARAMETERS

Ci ks kc Si

surge 0.45 2.0 0.8 0.1414

sway 0.55 23 0.6 0.8105

heave 0.65 0.0 0.8 0.8105

roll 0.0 10.0 0.8 0.0

pitch 0.1 0.0 1.4 0.8105

yaw 0.1 0.0 1.4 0.8105

The values for the above parameters have been identified

experimentally in a wave tank within Heriot-Watt University.

During the identification process, a non-negligible delay of

1 sec was noted in the thrusters’ step response. To account

for this, the forces from the thrusters were passed from a

first-order filter, with transfer function as shown in (6). The

step response of filter is presented in Figure 1.

G(s) =
3.25

s+ 3.25
(6)
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Fig. 1. Step response of the first-order filter that has been used to model
the motors’ delay

The acceleration in the body frame is integrated to yield

the vehicle’s velocity. Using the vehicle’s kinematic equa-

tions, the velocities are transformed into the world coordinate

frame. The latter are integrated further, to compute the dis-

placement of the robot along the north and east directions, as

well as the vehicle’s depth and orientation (roll-pitch-yaw).

To accomplish that, a 4-th order integration method from

the Runge-Kutta family is employed. The main advantage

of this method is the increased accuracy, even when large

integration steps are used.

B. Linear Weighted Projection Regression

Locally Weighted Projection Regression (LWPR) [2] is a

novel algorithm, which uses linear models to approximate

locally, high dimensional non-linear functions. Similarly to

the Partial Least Squares (PLS) [15], LWPR performs local

dimensionality reduction, to identify the most important

directions in the input space. This feature of LWPR makes

it suitable for systems with redundant inputs. After the

dimensionality reduction, the algorithm computes locally a

hyperplane, to approximate the non-linear target function.

The region, where each local model is activated, namely the

Receptive Field of the local model, is defined using a kernel.

Given a new query point, all the local models compute a

prediction. The final prediction of the model is calculated

as the weighted sum of all the predictions from the local

models. The weight, which controls the contribution of each

model in the final estimation, comes out from the kernel

of the receptive field. The receptive fields described above

adjust on-line, as more data become available. An extensive

description of the algorithm is beyond the scope of this brief.

The full details of the method can be found in [2]

1) Training: The LWPR method was used to learn a

corrective term for the surge, the sway and the yaw dynamics.

To this end, the robot was deployed in a wave tank, manually

driven around using a joystick. While gathering the training

data, the main objective was to cover the typical range of

the robot’s thrusters. Several parameters control the training

phase of the algorithm. The most important are:

• init D: initial size of a receptive field

• update D: switches on/off the online adaptation of the

receptive fields

• init alpha: learning rate for the RF distance metric

adaptation

• penalty: This parameter is used to prevent receptive

fields from becoming indefinitely small

The parameter init D is updated on-line, if update D is

set to true. Small values for init D may fail to capture the

non-linearities of the target function, whereas large values

may lead to over-fitting. As mentioned in the algorithm’s

documentation [16], a typical tuning procedure commences

with the estimation of init D. In the first stage of tuning,

the on-line adaptation of the receptive fields is switched off.

Various models with different init D values in the range

[1, 200] have been tested on a cross validation set. The

model with the best performance on the validation tests

was chosen for the second stage of the tuning process.



Following that, the incremental adaptation of the receptive

fields was activated. One more grid search was performed for

the init alpha parameter. The final models for each direction

are summarized in Table II.

TABLE II

PARAMETERS FOR THE LWPR ALGORITHM AFTER TUNING

DoF init D init alpha penalty

surge 190 6 0.0001

sway 130 11 0.0001

yaw 32 22 0.0001

2) Validation of the model: To evaluate the generalization

capacity of the LWPR, predictions were computed on cross-

validations datasets. The normalized Mean Square Error was

used as the metric for the comparison between models. The

nMSE is computed using (7), (8).

MSE =

√

√

√

√

n
∑

i=1

(x
(i)
1 − x

(i)
2 )2

n
(7)

nMSE =
MSE

xmax − xmin

(8)

Fig. 2. Comparison between the actual surge velocity and the predictions
from the hydrodynamics and from our method.

Fig. 3. Comparison between the actual sway velocity and the predictions
from the hydrodynamics and from our method.

Figures 2, 3, 4 illustrate the predicted accelerations from

the augmented hydrodynamical model, compared to the

standard hydrodynamics along the surge, sway and yaw

Fig. 4. Comparison between the actual yaw acceleration and the predictions
from the hydrodynamics and from our method.

dimensions respectively. The augmented model outperforms

the hydrodynamics in all dimensions. Table III summarizes

the performance of the two models in terms of the normalized

mean square error of the prediciton with respect to the ground

truth, as measured by the sensors of the vehicle.

TABLE III

CROSS VALIDATION STATISTICS

DoF Hydrodynamics LWPR

surge 0.44 0.12

sway 0.95 0.19

yaw 0.59 0.05

C. Extended Kalman Filter

Kalman filtering [17] is a well established technique,

which enables the fusion of noisy measurements. The mea-

surements are combined with the aid of the noise statistics,

as well as the system’s dynamics. Briefly, the Kalman Filter

operates in two steps: Firstly, the future state is computed

(prediction step) by the system’s dynamical model. Next,

the estimation is corrected, leveraging the incoming sensor

measurements. The accuracy of each sensor, as encoded in

the respective measurement model, is exploited to weigh the

sensor’s influence on the final estimation of the state. Hence,

the Kalman Filter fuses noisy measurements in a statistically

optimal fashion. The standard Kalman Filter, however, only

applies to systems with linear dynamics. To remedy that, the

Extended Kalman Filter (EKF) has been developed.

The update step of the Kalman Filter commences with

the computation of the innovation. The innovation measures

the difference between the predictions of the model and the

observations (sensor measurements). Taking into account the

sensor statistics, the Kalman gain is computed. The Kalman

gain is, in fact, a weighting factor between the model’s

predictions and the measurements. Most often, the Kalman

Filter utilizes an accurate dynamic model of the system, as

the means to compensate for noisy sensor measurements.

On the contrary, the proposed algorithm uses the innovation

of the filter to improve the accuracy of the dynamic model

(i.e. to learn the corrective term in (1)). At first, this may



Fig. 5. Nessie is the main research platform of the Oceans System Lab. It
is a hover capable torpedo shaped AUV with a variety of sensors that are
used for navigation (DVL,Gyro,Compass) as well as a Blueview forward
looking sonar for perception.

seem contradictory to the typical usage of the filter; yet it

is done intentionally. The main objective of this research is

to construct a model, which resembles the behavior of the

robot’s sensors. As the difference between model prediction

and observations, the Kalman Filter innovation is used to

learn the corrective term.

IV. EXPERIMENTS

For the experiments, a torpedo shaped AUV has been

used. Specifically, Nessie (Figure 5) is a research vehicle,

developed within the Ocean Systems Lab. Table IV lists the

navigation sensors which are available on Nessie.

TABLE IV

NESSIE’S NAVIGATION SENSORS

DVL Teledyne Explorer PA

FOG KVH DSP-3000

Compass TCM 6

Depth Sensor Keller Series 33X

In order to gather data from the navigation sensors,

Nessie was driven manually on a closed-loop trajectory. The

experiments took place in a wave tank within Heriot Watt

University. The starting point was marked to make sure that

the robot returned to its initial configuration. The measure-

ment from the IMU, the DVL and the pressure sensure were

recorded using ROS. Different trajectories were recorded for

the training and the validation of the algorithm. The sensor

measurements also served as the ground truth, against which

the predictions of the augmented hydrodynamic model were

compared. The estimation of the vehicle’s velocity, along the

surge dimension, is shown in Figure 6. In the same figure,

the actual velocity of the vehicle is plotted, as measured by

the DVL. Similarly, Figures 7, 8 present the results for the

sway and yaw dimensions. The augmented hydrodynamic

model reconstructs the velocity profiles correctly in all the

directions of interest.

Next, the velocities were integrated, to yield the position of

the robot. Figure 9 illustrates the trajectory, as estimated by

Fig. 6. Comparison of the estimated and the actual surge velocity

Fig. 7. Comparison of the estimated and the actual sway velocity

Fig. 8. Comparison of the estimated and the actual yaw rate

our method, compared against the estimations from the hy-

drodynamics. Additionally, the ground truth from the sensors

is also plotted on the same graph. Despite the good match

between the prediction and the acceleration measurements,

the position estimation accumulates error as the experiment

progresses. This is an effect of the two-step integration,

which is required to compute the position of the robot from

the acceleration.

Figure 10 provides a similar comparison for data, gathered

during the SAUC E-2013 underwater competition. This data

were not used for the training of the augmented hydro-



Fig. 9. In this figure the actual and the predicted trajectories are compared.
Due to integration error accumulation we see that both the trajectory that
was computed by the hydrodynamics as well as the one computed with our
method suffer from non-negligible drift

Fig. 10. Comparison of actual and predicted trajectory from data gathered
during the SAUC E-2013 underwater competition

dynamic model. Apart from the drift due to integration

error, the predicted trajectory strongly resembles the actual

trajectory of the vehicle. In this experiment the range of

the model input was greater than during the experiments in

the wave tank. Thus, the augmented hydrodynamic model

doesn’t fail in the case of unknown inputs. Nevertheless, the

accuracy of the estimation deteriorated.

V. CONCLUSIONS

As shown previously, the proposed algorithm accurately

estimates the vehicle’s velocity. From our recent experience

with Nessie, the operation of the DVL is often interrupted;

especially when the pitch or roll of the robot is high or in the

presence of strong acoustic reflections (e.g. close to the tank’s

wall). Similar behavior was observed for Nessie’s one-axis

gyro. As a remedy, the predicted values from the augmented

hydrodynamic model may substitute corrupted measurements

from a temporarily unavailable or failed sensor.

In the future, the adaptive traits of LWPR will be exploited,

to compensate for the external disturbances (waves, currents).

Moreover, the case of thruster failures will be investigated.

All the above will be combined with a prognostic framework

that estimates the health condition of the sensors and the

actuators. When the prognostic system predicts a possible

sensor or actuator failure, the respective model will be

activated, to alleviate the impact on the navigation.
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